Topographic Ocean Gyres: A Western Boundary Slope

1996 ◽  
Vol 26 (8) ◽  
pp. 1468-1479 ◽  
Author(s):  
Atsushi Kubokawa ◽  
James C. McWilliams
2018 ◽  
Vol 48 (12) ◽  
pp. 2949-2964 ◽  
Author(s):  
Anthony Wise ◽  
Chris W. Hughes ◽  
Jeff A. Polton

AbstractIt is our aim with this paper to investigate how the presence of a continental shelf and slope alters the relationship between interior ocean dynamics and western boundary (coastal) sea level. The assumption of a flat-bottomed basin with vertical sidewall at the coast is shown to hide the role that depth plays in the net force acting on the coast. A linear β-plane theory is then developed describing the transmission of sea level over variable depth bathymetry as analogous to the steady advection–diffusion of a thermal fluid. The parameter , relating the friction parameter r to the bathymetry depth H and width , is found to determine the contribution of interior sea level to coastal sea level, with small giving maximum penetration and large maximum insulation. In the small (infinite friction) limit the frictional boundary layer extends far offshore, and coastal sea level tends toward the vertical sidewall solution. Adding simple stratification produces exactly the same result but with reduced effective depth and hence enhanced penetration. Penetration can be further enhanced by permitting weakly nonlinear variations of thermocline depth. Wider and shallower shelves relative to the overall scales are also shown to maximize penetration for realistic values of . The theory implies that resolution of bathymetry and representation of friction can have a large impact on simulated coastal sea level, calling into question the ability of coarse-resolution models to accurately represent processes determining the dynamic coastal sea level.


2016 ◽  
Vol 795 ◽  
pp. 423-442 ◽  
Author(s):  
I. V. Shevchenko ◽  
P. S. Berloff ◽  
D. Guerrero-López ◽  
J. E. Roman

This paper studies the large-scale low-frequency variability of the wind-driven midlatitude ocean gyres and their western boundary currents, such as the Gulf Stream or Kuroshio, simulated with the eddy-resolving quasi-geostrophic model. We applied empirical orthogonal functions analysis to turbulent flow solutions and statistically extracted robust and significant large-scale decadal variability modes concentrated around the eastward jet extension of the western boundary currents. In order to interpret these statistical modes dynamically, we linearized the governing quasi-geostrophic equations around the time-mean circulation and solved for the corresponding full set of linear eigenmodes with their eigenfrequencies. We then projected the extracted decadal variability on the eigenmodes and found that this variability is a multimodal coherent pattern phenomenon rather than a single mode or a combination of several modes as in the flow regimes preceding developed turbulence.


2021 ◽  
Vol 13 (4) ◽  
pp. 744
Author(s):  
J. Xavier Prochaska ◽  
Peter C. Cornillon ◽  
David M. Reiman

We performed an out-of-distribution (OOD) analysis of ∼12,000,000 semi-independent 128 × 128 pixel2 sea surface temperature (SST) regions, which we define as cutouts, from all nighttime granules in the MODIS R2019 Level-2 public dataset to discover the most complex or extreme phenomena at the ocean’s surface. Our algorithm (ULMO) is a probabilistic autoencoder (PAE), which combines two deep learning modules: (1) an autoencoder, trained on ∼150,000 random cutouts from 2010, to represent any input cutout with a 512-dimensional latent vector akin to a (non-linear) Empirical Orthogonal Function (EOF) analysis; and (2) a normalizing flow, which maps the autoencoder’s latent space distribution onto an isotropic Gaussian manifold. From the latter, we calculated a log-likelihood (LL) value for each cutout and defined outlier cutouts to be those in the lowest 0.1% of the distribution. These exhibit large gradients and patterns characteristic of a highly dynamic ocean surface, and many are located within larger complexes whose unique dynamics warrant future analysis. Without guidance, ULMO consistently locates the outliers where the major western boundary currents separate from the continental margin. Prompted by these results, we began the process of exploring the fundamental patterns learned by ULMO thereby identifying several compelling examples. Future work may find that algorithms such as ULMO hold significant potential/promise to learn and derive other, not-yet-identified behaviors in the ocean from the many archives of satellite-derived SST fields. We see no impediment to applying them to other large remote-sensing datasets for ocean science (e.g., SSH and ocean color).


2016 ◽  
Vol 29 (24) ◽  
pp. 9125-9139 ◽  
Author(s):  
Adeline Bichet ◽  
Paul J. Kushner ◽  
Lawrence Mudryk

Abstract Better constraining the continental climate response to anthropogenic forcing is essential to improve climate projections. In this study, pattern scaling is used to extract, from observations, the patterned response of sea surface temperature (SST) and sea ice concentration (SICE) to anthropogenically dominated long-term global warming. The SST response pattern includes a warming of the tropical Indian Ocean, the high northern latitudes, and the western boundary currents. The SICE pattern shows seasonal variations of the main locations of sea ice loss. These SST–SICE response patterns are used to drive an ensemble of an atmospheric general circulation model, the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), over the period 1980–2010 along with a standard AMIP ensemble using observed SST—SICE. The simulations enable attribution of a variety of observed trends of continental climate to global warming. On the one hand, the warming trends observed in all seasons across the entire Northern Hemisphere extratropics result from global warming, as does the snow loss observed over the northern midlatitudes and northwestern Eurasia. On the other hand, 1980–2010 precipitation trends observed in winter over North America and in summer over Africa result from the recent decreasing phase of the Pacific decadal oscillation and the recent increasing phase of the Atlantic multidecadal oscillation, respectively, which are not part of the global warming signal. The method holds promise for near-term decadal climate prediction but as currently framed cannot distinguish regional signals associated with oceanic internal variability from aerosol forcing and other sources of short-term forcing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tainã M. L. Pinho ◽  
Cristiano M. Chiessi ◽  
Rodrigo C. Portilho-Ramos ◽  
Marília C. Campos ◽  
Stefano Crivellari ◽  
...  

AbstractSubtropical ocean gyres play a key role in modulating the global climate system redistributing energy between low and high latitudes. A poleward displacement of the subtropical gyres has been observed over the last decades, but the lack of long-term monitoring data hinders an in-depth understanding of their dynamics. Paleoceanographic records offer the opportunity to identify meridional changes in the subtropical gyres and investigate their consequences to the climate system. Here we use the abundance of planktonic foraminiferal species Globorotalia truncatulinodes from a sediment core collected at the northernmost boundary of the South Atlantic Subtropical Gyre (SASG) together with a previously published record of the same species from the southernmost boundary of the SASG to reconstruct meridional fluctuations of the SASG over last ca. 70 kyr. Our findings indicate southward displacements of the SASG during Heinrich Stadials (HS) 6-4 and HS1, and a contraction of the SASG during HS3 and HS2. During HS6-4 and HS1, the SASG southward displacements likely boosted the transfer of heat to the Southern Ocean, ultimately strengthening deep-water upwelling and CO2 release to the atmosphere. We hypothesize that the ongoing SASG poleward displacement may further increase oceanic CO2 release.


2020 ◽  
Vol 125 (11) ◽  
Author(s):  
Dafydd Gwyn Evans ◽  
Eleanor Frajka‐Williams ◽  
Alberto C. Naveira Garabato ◽  
Kurt L. Polzin ◽  
Alexander Forryan

2018 ◽  
Author(s):  
Wei Cui ◽  
Wei Wang ◽  
Jie Zhang ◽  
Jungang Yang

Abstract. This study investigated the statistics of eddy splitting and merging in the global oceans based on 23 years’ altimetry data. Multicore structures were identified using an improved threshold-free closed-contour algorithm of sea surface height. Splitting and merging events were discerned from continuous time series maps of sea level anomalies. Multicore structures represent an intermediate stage in the process of eddy evolution, similar to the generation of multiple nuclei in a cell as a preparatory phase for cell division. Generally, splitting or merging events can change substantially (by a factor of two or more) the eddy scale, amplitude, and eddy kinetic energy. Specifically, merging (splitting) generally causes an increase (decrease) of eddy properties. Multicore eddies were found to tend to split into two eddies with different intensities. Similarly, eddy merging is not an interaction of two equal-intensity eddies, and that it tends to manifest as a strong eddy merging with a weaker one. A hybrid tracking strategy based on the eddy overlap ratio, considering both multicore and single-core eddies, was used to confirm splitting and merging events globally. The census revealed that eddy splitting and merging do not always occur most frequently in eddy-rich regions, e.g., their frequencies of occurrence in the Antarctic Circumpolar Current and western boundary currents were found obviously higher than mid-latitude regions (20°–35°) north and south. Eddy splitting and merging are caused primarily by an unstable configuration of multicore structures due to obvious current– or eddy–topography interaction, strong current variation, and eddy–mean flow interaction.


2020 ◽  
Vol 33 (2) ◽  
pp. 707-726 ◽  
Author(s):  
Paige E. Martin ◽  
Brian K. Arbic ◽  
Andrew McC. Hogg ◽  
Andrew E. Kiss ◽  
James R. Munroe ◽  
...  

AbstractClimate variability is investigated by identifying the energy sources and sinks in an idealized, coupled, ocean–atmosphere model, tuned to mimic the North Atlantic region. The spectral energy budget is calculated in the frequency domain to determine the processes that either deposit energy into or extract energy from each fluid, over time scales from one day up to 100 years. Nonlinear advection of kinetic energy is found to be the dominant source of low-frequency variability in both the ocean and the atmosphere, albeit in differing layers in each fluid. To understand the spatial patterns of the spectral energy budget, spatial maps of certain terms in the spectral energy budget are plotted, averaged over various frequency bands. These maps reveal three dynamically distinct regions: along the western boundary, the western boundary current separation, and the remainder of the domain. The western boundary current separation is found to be a preferred region to energize oceanic variability across a broad range of time scales (from monthly to decadal), while the western boundary itself acts as the dominant sink of energy in the domain at time scales longer than 50 days. This study paves the way for future work, using the same spectral methods, to address the question of forced versus intrinsic variability in a coupled climate system.


Sign in / Sign up

Export Citation Format

Share Document